CRANE SET
BRIDGE CRANE COMPONENTS

TO CREATE YOUR CUSTOM BRIDGE CRANE
A series of products conceived and designed to be assembled and create a bridge crane suited to your needs

STANDING BRIDGES

1. Power driven travel heads with DGT/DGP series wheel units
2. DGT series wheel units with DGP series suspended gear motor
3. DRH series wire rope hoists (in the figure) - DMK series chain hoists
4. Electrical control panel
5. Bridge beams (NOT SUPPLIED) but dimensioned with ARIANNA software
SUSPENDED BRIDGES: DPS SERIES KIT

6 - 7 Power driven travel heads with DMT 3-4-5 series trolleys
8 DRH series wire rope hoists - DMK series chain hoists (in the figure)
9 Electrical control panel
10 Bridge beams in I Iron NOT SUPPLIED but indicated in the technical tables

ARIANNA
Selected software for standard components for standing/suspended bridge cranes
NORMES AND CERTIFICATIONS

Donati products are designed and built taking into consideration the “Essential Safety Requirements” of annex I to the Machinery Directive 2006/42/EC and are issued on the market equipped with an EC IIA declaration of conformity or IIB declaration of incorporation based on the type of component.

They are also in compliance with the following directives:
- LOW VOLTAGE DIRECTIVE 2014/35/UE
- ELECTROMAGNETIC COMPATIBILITY DIRECTIVE 2014/30/UE

APPLICABLE NORMS AND REGULATIONS
- EN ISO 12100/2010 “Fundamental concepts on general engineering principles”
- EN ISO 13849-1/2008 “General principles for design”
- EN 13001-1:2009 “General design – Part 1: General principles and requirements”
- ISO 4301-1:1988 “Classifications for lifting equipment”
- ISO 4308-1:2003 “Selection of wire ropes – General”
- DIN 15401 “Choice of lifting hooks”
- UNI 9466:1994 “Shell drum. Design requirements”
- FEM 9.661/86 “Dimensions and designs of rope reeving components”
- FEM 9.671/88 “Quality of chains”
- ISO 8306/85 “Tolerances for cranes and tracks”
- EN 12077-2/2008 “Limiting and indication device”
- EN 60204-32/2009 “Safety of the electrical equipment of lifting machines”
- EN 60529/1997 “IP enclosure (IP Codes)”
- ISO 4301-1:1988 “Classification of lifting equipment. General”
- LOW VOLTAGE DIRECTIVE 2014/35/UE
- ELECTROMAGNETIC COMPATIBILITY DIRECTIVE 2014/30/UE

PROTECTION AND SHEATHING OF ELECTRICAL PARTS
- Sliding motors: protection IP55 (motor) - IP23 (brake); class “F” insulation
- Limit switch: minimum protection IP65; max. insulation voltage 500 V
- Protections and insulations differing from the standard, which can be supplied on request.

ELECTRICAL POWER
Products designed to be powered with alternating electric current with three phase voltage of: 400 V - 50Hz according to IEC 38-1 Non-standard voltages and frequencies can be supplied upon request.

ENVIRONMENTAL CONDITIONS FOR STANDARD USAGE
- Operating temperature: minimum - 10° C; maximum + 40°C
- Maximum relative humidity: 80% - Maximum altitude 1000 m above sea level

NOISE EMISSIONS
The noise level emitted by the products during use, both empty and at full load, is always under **85 dB (A)**.
1 TRAVEL HEADS FOR STANDING BRIDGE CRANE

The main components on end-carriages for bridge cranes are the:

END-CARRIAGE FRAMEWORK:
- The load-bearing structure is made from rectangular tubular.
- The bridge crane girders are fixed to the end-carriage structure using a system of high-resistance bolts and a pin centring system.
DONATI end-carriages are designed for handling operations on bridge crane rails:
- at single running speed from 3.2 to 25 m/min;
- at two running speeds, from 12.5/3.2 to 80/20 m/min; operating on:
 - single girder, with a capacity of up to 20,000 kg and gauge of up to 25 m;
 - double girder, with a capacity of up to 40,000 kg and gauge of up to 27 m.

Designed and built on the principle of modular components assembled together in relation to their specific use, they are equipped with drive units comprising “DGT” series wheel groups, which are combined with “DGP” series offset geared motors.

They are configured in 6 sizes, where the basic components are:
- 6 “DGT” series drive wheel group sizes (Ø 125, Ø 160, Ø 200, Ø 250, Ø 315 and Ø 400/400 R)
- 4 “DGP” series offset reducers sizes (DGP 0, DGP 1, DGP 2 and DGP 3)
- 4 self-braking motors sizes (motor 71, motor 80, motor 100 and motor 112)

Operating limitations for end-carriages on SINGLE GIRDER or DOUBLE GIRDER bridge cranes, in relation to span

<table>
<thead>
<tr>
<th>END-CARRIAGES TYPE</th>
<th>SPAN (m)</th>
<th>SINGLE GIRDER</th>
<th>DOUBLE GIRDER</th>
<th>BRIDGE CRANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE “DGT” Ø R (mm)</td>
<td>BASIS PR (mm)</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>125</td>
<td>1800 M</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>1800 M</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2100 M</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>2700 M</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>315</td>
<td>2400 M</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>400</td>
<td>3900 R</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

“DGT” WHEELS

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Ø R (mm)</th>
<th>“DGP” REDUCERS SIZE 0</th>
<th>“DGP” REDUCERS SIZE 1</th>
<th>“DGP” REDUCERS SIZE 2</th>
<th>“DGP” REDUCERS SIZE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>Motors size 71</td>
<td>Motors size 71</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>5</td>
<td>315</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>6</td>
<td>400</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
</tbody>
</table>
OPERATING LIMITATIONS FOR END-CARRIAGES ON SINGLE GIRDER BRIDGE CRANES BASED ON: CAPACITY - ISO/FEM GROUP - SPAN

<table>
<thead>
<tr>
<th>CAPACITY (kg)</th>
<th>ISO/FEM GROUP</th>
<th>SPAN (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>3200</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>6300</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>12500</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>16000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
</tbody>
</table>

Admissible travelling mass for end-carrriages on SINGLE GIRDER bridge crane

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissible travelling mass for end-carrriages on SINGLE GIRDER bridge crane</td>
<td>Travelling mass (kg) = capacity + crane weight + weight of trolley/hoist</td>
<td></td>
</tr>
<tr>
<td>1 – 125</td>
<td>1800</td>
<td>2400</td>
</tr>
<tr>
<td>2 – 160</td>
<td>3300</td>
<td>1800</td>
</tr>
<tr>
<td>3 – 200</td>
<td>2400</td>
<td>3300</td>
</tr>
<tr>
<td>4 – 250</td>
<td>2000</td>
<td>3600</td>
</tr>
<tr>
<td>5 – 315</td>
<td>2200</td>
<td>3600</td>
</tr>
<tr>
<td>6 – 400</td>
<td>2400</td>
<td>3600</td>
</tr>
</tbody>
</table>

Note: operating limitations determined using Donati components (hoist, trolley, etc.) and sectioned beams sized as per arrow a = Span / 750

OPERATING LIMITATIONS FOR END-CARRIAGES ON DOUBLE GIRDER BRIDGE CRANES BASED ON: CAPACITY - ISO/FEM GROUP - SPAN

<table>
<thead>
<tr>
<th>CAPACITY (kg)</th>
<th>ISO/FEM GROUP</th>
<th>SPAN (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>3200</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>6300</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>12500</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>16000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>25000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>32000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
<tr>
<td>40000</td>
<td>M4/1Am, M5/2m</td>
<td></td>
</tr>
</tbody>
</table>

Admissible travelling mass from beams on DOUBLE GIRDER bridge crane

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissible travelling mass from beams on DOUBLE GIRDER bridge crane</td>
<td>Travelling mass (kg) = capacity + crane weight + weight of trolley/hoist</td>
<td></td>
</tr>
<tr>
<td>1 – 125</td>
<td>2400</td>
<td>3300</td>
</tr>
<tr>
<td>2 – 160</td>
<td>3300</td>
<td>2400</td>
</tr>
<tr>
<td>3 – 200</td>
<td>2700</td>
<td>3600</td>
</tr>
<tr>
<td>4 – 250</td>
<td>2700</td>
<td>3600</td>
</tr>
<tr>
<td>5 – 315</td>
<td>1800</td>
<td>3900</td>
</tr>
<tr>
<td>6 – 400</td>
<td>2400</td>
<td>3900</td>
</tr>
</tbody>
</table>

Note: operating limitations determined using Donati components (hoist, trolley, etc.) and sectioned beams sized as per arrow a = Span / 750

TRAVEL HEADS FOR STANDING BRIDGE CRANE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissible travelling mass</td>
<td>Travelling mass (kg) = capacity + crane weight + weight of trolley/hoist</td>
</tr>
<tr>
<td>1 – 125</td>
<td>8.400</td>
</tr>
<tr>
<td>2 – 160</td>
<td>11.100</td>
</tr>
<tr>
<td>3 – 200</td>
<td>9.800</td>
</tr>
<tr>
<td>4 – 250</td>
<td>15.800</td>
</tr>
<tr>
<td>5 – 315</td>
<td>14.800</td>
</tr>
<tr>
<td>6 – 400</td>
<td>22.000</td>
</tr>
<tr>
<td>7 – 500</td>
<td>24.400</td>
</tr>
<tr>
<td>8 – 625</td>
<td>19.000</td>
</tr>
<tr>
<td>9 – 750</td>
<td>24.800</td>
</tr>
<tr>
<td>10 – 875</td>
<td>28.600</td>
</tr>
</tbody>
</table>

Note: operating limitations determined using Donati components (hoist, trolley, etc.) and sectioned beams sized as per arrow a = Span / 750
2 TRAVEL HEADS FOR STANDING BRIDGE CRANE

“DGT” SERIES WHEEL GROUPS

- Drive wheels Ø 125, Ø 160, Ø 200, Ø 250 and Ø 315 are carbon steel moulded. Sliding wheels Ø 400 and Ø 400 R are in spheroid cast iron.
- All wheel groups revolve on permanently lubricated radial bearings, with the exception of the extra load capacity Ø 400 R wheel group, which is fitted with roller bearings.
- Available in idle operation or ready for drive operation combined with an offset geared-motor.
- In drive operation, the direct connection is coaxial between the offset geared-motor output shaft and the grooved hub on the drive wheel ensures a high level of operating safety and reliability.
- The wheel group is available as standard with a double-flange version and can, on request, be supplied with different sliding band widths depending on the type of rail it runs on.

“DGP” SERIES OFFSET GEARED-MOTORS

- Reducers are designed as an “offset geared-motor” type with a concave shaft, featuring parallel axes with two or three stages of reduction, and permanent oil-bath lubrication.
- Engineered with cylindrical high resistance steel gears, featuring spiral tooth, heat-treated, entirely supported on ball bearings.
- Sized to resist a lifetime of stress and wear, in accordance to the pertinent ISO service group.
- The connection between the geared-motor and drive wheel is guaranteed by a slotted shaft connecting the holes on both parts, while the geared-motor fastened to the wheel group makes use of a system comprising a reaction arm fastened to the wheel group, and an elastic counter bearing with rubber buffers and a setscrew. The entire geared-motor-wheel connection system guarantees both high quality running operation and maximum duration over time with low maintenance, thanks to the elimination of rigid connections.
- The electric motors are asynchronous, featuring progressive start-up, with standard ventilation, self-braking with axial shifting of the rotor guaranteeing fast, reliable mechanical braking.
- Conical brakes are fitted with asbestos-free brake lining, featuring an extended braking surface.

Both in idle and drive operation, the wheel groups are supported and contained within an electro-welded steel structure that acts as a support casing for the entire group, and as a joining element between the end-carriage frame on which the wheel group is assembled.

The brake block comprises a fan which ensures proper cooling for the brake and motor, shifting axially with the motor shaft; the brake function is activated automatically in the case of a power outage.

The connection between the motor and offset geared-motor features a joint contained within a coupling housing.

THE CONNECTION PLATE (SINGLE GIRDER) OR PLATES (DOUBLE GIRDER) FIX THE END-CARRIAGE TO THE CRANE’S GIRDER OR GIRDERs: Specially designed connection plates fix the end-carriages to the girder/s of the bridge crane. Built in steel plate in different sizes, they are welded to the bridge crane girders, whether tubular or plated sectioned, laterally joined or fixed to the travelling beam structures.

ACCESSORIES (limit switches, towing arms, etc.):

The travel limit switch on the end-carriages, when supplied, is a rotating type with a double cross-rod ensuring for two-speed cranes a dual function of pre-deceleration and stopping in both directions, and is housed on the DGT drive unit.
CLEARANCE REQUIREMENTS FOR WHEEL GROUPS BASED ON COMBINATIONS WITH RELATED OFFSET GEARED-MOTORS

<table>
<thead>
<tr>
<th>WHEEL SPECIFICATIONS</th>
<th>INTERNAL WIDTH</th>
<th>WHEEL GROUP CLEARANCE (mm)</th>
<th>SIZE</th>
<th>GEARED-MOTOR CLEARANCE (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE & Ø (mm)</td>
<td>h1 h2 L1 L2</td>
<td>h1 h2 L1 L2</td>
<td>b1</td>
<td>b2 b1 L2 E F H3 H4</td>
</tr>
<tr>
<td>125 3.670 36 kN</td>
<td>50 80 100 160 150 200 30</td>
<td>0 71 332 135 138 223 0 3</td>
<td>71</td>
<td>368 135 152 270 0.5 19.5</td>
</tr>
<tr>
<td></td>
<td>maximum</td>
<td>60 165 220 300 145 50 55 7.5</td>
<td>1</td>
<td>80 383 150 152 278 10.5 47.5</td>
</tr>
<tr>
<td></td>
<td>special</td>
<td>70 90 110</td>
<td>1</td>
<td>80 383 150 152 278 10.5 47.5</td>
</tr>
<tr>
<td>160 4.893 48 kN</td>
<td>55 93 120 180 190 260 50</td>
<td>0 71 332 135 138 223 -10 -17</td>
<td>71</td>
<td>368 135 152 270 0.5 19.5</td>
</tr>
<tr>
<td></td>
<td>maximum</td>
<td>65 120 210 185 60 250 65 15</td>
<td>1</td>
<td>80 383 150 152 278 0.5 19.5</td>
</tr>
<tr>
<td></td>
<td>special</td>
<td>80 105 130</td>
<td>1</td>
<td>80 383 150 152 278 0.5 19.5</td>
</tr>
<tr>
<td>200 7.340 72 kN</td>
<td>60 100 135</td>
<td>0 71 336 135 152 270 -9.5 -10.5</td>
<td>1</td>
<td>80 372 150 152 278 -9.5 -2.5</td>
</tr>
<tr>
<td></td>
<td>maximum</td>
<td>70 200 230 325 65 260 230 80 290 75 25</td>
<td>2</td>
<td>80 398 150 152 278 -9.5 -2.5</td>
</tr>
<tr>
<td></td>
<td>special</td>
<td>90 120 145</td>
<td>2</td>
<td>100 436 150 152 278 -9.5 -2.5</td>
</tr>
<tr>
<td>250 10.805 106 kN</td>
<td>70 110 149</td>
<td>1 71 356 135 152 270 -24.5 -40.5</td>
<td>71</td>
<td>372 150 152 278 -24.5 -32.5</td>
</tr>
<tr>
<td></td>
<td>maximum</td>
<td>80 230 280 375 65 310 275 80 335 90 35</td>
<td>2</td>
<td>80 398 150 152 278 -24.5 -32.5</td>
</tr>
<tr>
<td></td>
<td>special</td>
<td>100 135 165</td>
<td>2</td>
<td>100 436 150 152 278 -24.5 -32.5</td>
</tr>
<tr>
<td>315 14.679 144 kN</td>
<td>75 120 159</td>
<td>1 71 356 135 152 270 -24.5 -40.5</td>
<td>71</td>
<td>356 135 152 278 -32.5 -52.5</td>
</tr>
<tr>
<td></td>
<td>maximum</td>
<td>85 260 350 470 80 390 335 100 385 105 52.5</td>
<td>2</td>
<td>80 368 150 152 278 -32.5 -52.5</td>
</tr>
<tr>
<td></td>
<td>special</td>
<td>110 150 180</td>
<td>2</td>
<td>100 406 190 227 376 -32.5 -52.5</td>
</tr>
<tr>
<td>400 18.960 186 kN</td>
<td>85 135 170</td>
<td>2 80 362 150 227 376 -44 -39</td>
<td>80</td>
<td>362 150 227 376 -44 -39</td>
</tr>
<tr>
<td></td>
<td>maximum</td>
<td>95 290 440 570 100 470 385 125 440 145 55</td>
<td>2</td>
<td>100 400 190 227 376 -44 -39</td>
</tr>
<tr>
<td></td>
<td>special</td>
<td>115 155 190</td>
<td>3</td>
<td>112 500 225 265 456 -25 41</td>
</tr>
</tbody>
</table>

Quotes L2 in red refer to wheels operating with a “standard” and “maximum” sheave:

For Ø 315 and Ø 400 wheels with a “special” sheave, the quota L2 increases by 10 mm, with respect to the values listed in the table.

TRAVEL HEADS FOR STANDING BRIDGE CRANE
DPS SINGLE GIRDER SUSPENSION BRIDGE KITS

The KIT includes the supply of all the components necessary for assembly of a single girder suspension bridge crane. The bridge girder is not included in the KIT but the catalogue shows the recommended and tested IPE or HEA girders. The catalogue prescribes the use of HEA girders for heads and IPE or HEA girders for bridge girders. The trolleys and head can have different combinations based on the capacity and the width of the flange of the rail; in general there is a drive trolley and an idle trolley for each head.

For Kits with a capacity up to 2000 kg and rail girders with flange less than 220 mm to support the head a single tie-rod is used. The head is a simple perforated girder, closed at the end and reinforced in the centre with a core. The bridge girder is supported by clamps.

For Kits with a capacity up to 2000 kg and rail girders with flange greater than 220 mm to support the head a bracket is used. The head is composed of a girder closed at the ends and reinforced in the centre where hooks are welded for the bracket. The bridge girder is supported by clamps.

For Kits with a capacity greater than 2000 kg and rail girders with flange with 90 mm minimum width, to support the head a bracket is used. The head is composed of a girder, the upper and lower flitch plates are cut at its ends; cores are applied in the centre then welded to the splice plate. The bridge girder is then welded to the splice counterplate.
TECHNICAL FEATURES AND SPECIFICATIONS - WEIGHTS (SINGLE HEAD)

SUSPENSION BRIDGE DPS1 - CAPACITY 1000 KG - HOIST DMK

| Sc | Pr | HEA GIRDER TYPE | Pr | GIRDER TYPE | GIRDER | GIRGER | GIRG
TECHNICAL FEATURES AND SPECIFICATIONS - WEIGHTS (SINGLE HEAD)

SUSPENSION BRIDGE DPS3 - CAPACITY 3200 KG - HOIST DMK

<table>
<thead>
<tr>
<th>Sc</th>
<th>Pr</th>
<th>HEAD (DIMENSIONS IN mm)</th>
<th>BRIDGE (DIMENSIONS IN mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td></td>
<td>m</td>
<td>Ht</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1200</td>
<td>220</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1500</td>
<td>240</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1800</td>
<td>240</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUSPENSION BRIDGE DPS4 - CAPACITY 4000 KG - HOIST DMK

<table>
<thead>
<tr>
<th>Sc</th>
<th>Pr</th>
<th>HEAD (DIMENSIONS IN mm)</th>
<th>BRIDGE (DIMENSIONS IN mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td></td>
<td>m</td>
<td>Ht</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1200</td>
<td>220</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1500</td>
<td>240</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1800</td>
<td>240</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL FEATURES AND SPECIFICATIONS - WEIGHTS (SINGLE HEAD)

SUSPENSION BRIDGE DPS1 - CAPACITY 1000 KG - HOIST DRH1

<table>
<thead>
<tr>
<th>Sc</th>
<th>Pr</th>
<th>HEA GIRDER TYPE</th>
<th>m</th>
<th>HEAD (DIMENSIONS IN mm)</th>
<th>BRIDGE (DIMENSIONS IN mm)</th>
<th>Weight kg</th>
<th>CODE HEAD PAIR</th>
<th>GIRDER TYPE</th>
<th>Hp</th>
<th>Lp</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td>T118J03 IPE240 240</td>
<td>3600</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>96</td>
<td>83</td>
<td></td>
<td>T118K03 HEA240 230</td>
<td>365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td>T118J04 IPE240 240</td>
<td>4800</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td>T118K04 HEA240 230</td>
<td>365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1800</td>
<td>2000 2162</td>
<td>83</td>
<td></td>
<td>T118J05 IPE240 240</td>
<td>6000</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>114 143</td>
<td>83</td>
<td></td>
<td>T118K05 HEA240 240</td>
<td>365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td>T118J06 IPE240 240</td>
<td>7000</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td>T118K06 HEA240 230</td>
<td>383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>140</td>
<td>133 162</td>
<td>83</td>
<td></td>
<td>T118J07 IPE270 270</td>
<td>8000</td>
<td>423</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td>T118K07 HEA240 230</td>
<td>383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For VdC with flange greater than 220 mm, increase the dimension D and U by 60 mm with Head HEA100, 42 mm with Head HEA120 and 23 mm with Head HEA140

SUSPENSION BRIDGE DPS2 - CAPACITY 2000 KG - HOIST DRH1

<table>
<thead>
<tr>
<th>Sc</th>
<th>Pr</th>
<th>HEA GIRDER TYPE</th>
<th>m</th>
<th>HEAD (DIMENSIONS IN mm)</th>
<th>BRIDGE (DIMENSIONS IN mm)</th>
<th>Weight kg</th>
<th>CODE HEAD PAIR</th>
<th>GIRDER TYPE</th>
<th>Hp</th>
<th>Lp</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td>T218J03 IPE300 300</td>
<td>3600</td>
<td>455</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>114 145</td>
<td>110</td>
<td></td>
<td>T218K03 HEA240 230</td>
<td>385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td>T218J04 IPE330 330</td>
<td>4800</td>
<td>485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>140</td>
<td>133 164</td>
<td>110</td>
<td></td>
<td>T218K04 HEA240 230</td>
<td>385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1800</td>
<td>2000 2202</td>
<td>110</td>
<td></td>
<td>T218J05 IPE330 330</td>
<td>6000</td>
<td>504</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>118 165 322</td>
<td>110</td>
<td></td>
<td>T218K05 HEA240 230</td>
<td>404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td>T218J06 IPE330 330</td>
<td>7000</td>
<td>504</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>160</td>
<td>152 183</td>
<td>110</td>
<td></td>
<td>T218K06 HEA240 230</td>
<td>404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td>T218J07 IPE330 330</td>
<td>8000</td>
<td>504</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>140</td>
<td>133 162</td>
<td>110</td>
<td></td>
<td>T218K07 HEA260 250</td>
<td>424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For VdC with flange greater than 220 mm, increase the dimension D and U by 37 mm with Head HEA120, and 18 mm with Head HEA140
TECHNICAL FEATURES AND SPECIFICATIONS - WEIGHTS (SINGLE HEAD)

SUSPENSION BRIDGE DPS3 - CAPACITY 3200 KG - HOIST DRH1

<table>
<thead>
<tr>
<th>Sc m</th>
<th>Pr</th>
<th>HEA GIRDER TYPE</th>
<th>Ht</th>
<th>Lt</th>
<th>L</th>
<th>D</th>
<th>ØR</th>
<th>O</th>
<th>Q</th>
<th>Q1</th>
<th>Weight kg</th>
<th>CODE HEAD PAIR</th>
<th>GIRDER</th>
<th>Hp</th>
<th>Lp</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>270</td>
<td>T318J03</td>
<td>IPE360</td>
<td>360</td>
<td>3500</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>T318K03</td>
<td>HEA300</td>
<td>290</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>T318J04</td>
<td>IPE360</td>
<td>360</td>
<td>4700</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T318K04</td>
<td>HEA300</td>
<td>290</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>210</td>
<td>343</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>270</td>
<td>T318J05</td>
<td>IPE360</td>
<td>360</td>
<td>5800</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>T318K05</td>
<td>HEA300</td>
<td>290</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>T318J06</td>
<td>IPE360</td>
<td>330</td>
<td>7000</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T318K06</td>
<td>HEA300</td>
<td>290</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>T318J07</td>
<td>IPE400</td>
<td>400</td>
<td>8000</td>
<td>758</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T318K07</td>
<td>HEA300</td>
<td>290</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1800</td>
<td>2000</td>
<td>2310</td>
<td>125</td>
<td>155</td>
<td>130</td>
<td>211</td>
<td>316</td>
<td>55</td>
<td>293</td>
<td>T318J08</td>
<td>IPE450</td>
<td>450</td>
<td>9000</td>
<td>828</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T318K08</td>
<td>HEA300</td>
<td>290</td>
<td>668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>T318J09</td>
<td>IPE450</td>
<td>450</td>
<td>10000</td>
<td>828</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T318K09</td>
<td>HEA320</td>
<td>310</td>
<td>688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>240</td>
<td>230</td>
<td>363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>293</td>
<td>T318J10</td>
<td>IPE500</td>
<td>500</td>
<td>11000</td>
<td>708</td>
</tr>
<tr>
<td></td>
<td>T318K10</td>
<td>HEA340</td>
<td>330</td>
<td>928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>T318J11</td>
<td>IPE550</td>
<td>550</td>
<td>12000</td>
<td>928</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T318K11</td>
<td>HEA360</td>
<td>350</td>
<td>728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>310</td>
<td>T318J12</td>
<td>IPE600</td>
<td>600</td>
<td>13000</td>
<td>798</td>
</tr>
<tr>
<td></td>
<td>T318K12</td>
<td>HEA400</td>
<td>390</td>
<td>768</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For bridge spans from 3 to 10 m possibility of Head with 1500 wheel centre to centre distance but only with hoist trolley DST1 Normal (head pair code T315...)

SUSPENSION BRIDGE DPS4 - CAPACITY 4000 KG - HOIST DRH1

<table>
<thead>
<tr>
<th>Sc m</th>
<th>Pr</th>
<th>HEA GIRDER TYPE</th>
<th>Ht</th>
<th>Lt</th>
<th>L</th>
<th>D</th>
<th>ØR</th>
<th>O</th>
<th>Q</th>
<th>Q1</th>
<th>Weight kg</th>
<th>CODE HEAD PAIR</th>
<th>GIRDER</th>
<th>Hp</th>
<th>Lp</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>270</td>
<td>T418J03</td>
<td>IPE500</td>
<td>500</td>
<td>3500</td>
<td>858</td>
</tr>
<tr>
<td></td>
<td>T418K03</td>
<td>HEA320</td>
<td>310</td>
<td>668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>270</td>
<td>T418J04</td>
<td>IPE500</td>
<td>500</td>
<td>4700</td>
<td>858</td>
</tr>
<tr>
<td></td>
<td>T418K04</td>
<td>HEA320</td>
<td>310</td>
<td>668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>210</td>
<td>343</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>270</td>
<td>T418J05</td>
<td>IPE500</td>
<td>500</td>
<td>5800</td>
<td>858</td>
</tr>
<tr>
<td></td>
<td>T418K05</td>
<td>HEA320</td>
<td>310</td>
<td>668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>T418J06</td>
<td>IPE500</td>
<td>500</td>
<td>7000</td>
<td>878</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T418K06</td>
<td>HEA320</td>
<td>310</td>
<td>878</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>293</td>
<td>T418J07</td>
<td>IPE500</td>
<td>500</td>
<td>8000</td>
<td>878</td>
</tr>
<tr>
<td></td>
<td>T418K07</td>
<td>HEA320</td>
<td>310</td>
<td>688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1800</td>
<td>2000</td>
<td>2310</td>
<td>125</td>
<td>155</td>
<td>130</td>
<td>211</td>
<td>316</td>
<td>55</td>
<td>310</td>
<td>T418J08</td>
<td>IPE500</td>
<td>500</td>
<td>9000</td>
<td>898</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T418K08</td>
<td>HEA320</td>
<td>310</td>
<td>708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>310</td>
<td>T418J09</td>
<td>IPE500</td>
<td>500</td>
<td>10000</td>
<td>798</td>
</tr>
<tr>
<td></td>
<td>T418K09</td>
<td>HEA340</td>
<td>330</td>
<td>728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>260</td>
<td>250</td>
<td>383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>T418J10</td>
<td>IPE550</td>
<td>550</td>
<td>11000</td>
<td>948</td>
</tr>
<tr>
<td></td>
<td>T418K10</td>
<td>HEA360</td>
<td>350</td>
<td>748</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>310</td>
<td>T418J11</td>
<td>IPE600</td>
<td>600</td>
<td>12000</td>
<td>748</td>
</tr>
<tr>
<td></td>
<td>T418K11</td>
<td>HEA400</td>
<td>390</td>
<td>788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>320</td>
<td>T418J12</td>
<td>IPE600</td>
<td>500</td>
<td>13000</td>
<td>1018</td>
</tr>
<tr>
<td></td>
<td>T418K12</td>
<td>HEA450</td>
<td>440</td>
<td>858</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For bridge spans from 3 to 10 m possibility of Head with 1500 wheel centre to centre distance but only with hoist trolley DST1 Normal (head pair code T415...)

13
8 DMK SERIES ELECTRICAL CHAIN HOIST WITH DMT SERIES TROLLEY

The range: created in 4 sizes 1 - 2 - 3 - 4 with capacity from 125 to 4000 kg in FEM units 1Am - 2m at a lifting speed of 2.5 - 3.2 - 4 - 6.3 - 8 - 16 m/min or two lifting speeds of 2.5/08 - 3.2/1 - 4/1.2 - 8/2.5 m/min

Technical specifications and data for DMK chain hoists with DMT trolleys

<table>
<thead>
<tr>
<th>CAPACITY (kg)</th>
<th>FEM GROUP</th>
<th>DMK TYPE</th>
<th>CHAIN FALLS</th>
<th>LIFTING SPEED (m/min)</th>
<th>LIFTING MOTOR POWER (kW)</th>
<th>DMK TROLLEY TYPE FOR HOIST</th>
<th>TROLLEY MOTOR POWER (kW)</th>
<th>CHAIN TYPE</th>
<th>CHAIN WEIGHT PER METER (kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>2m</td>
<td>154C</td>
<td>1 / 8</td>
<td>0.2 / 0.2</td>
<td>0.12 / 0.18 / 0.25</td>
<td>S = MANUAL-PUSH TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td>250</td>
<td>2m</td>
<td>132D</td>
<td>1 / 8</td>
<td>2.5 / 0.06</td>
<td>0.12 / 0.18 / 0.25</td>
<td>C = MANUAL GEAR OPERATED TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>232C</td>
<td>1 / 16</td>
<td>0.4 / 0.4</td>
<td>0.12 / 0.18 / 0.25</td>
<td>E = ELECTRIC TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td>500</td>
<td>2m</td>
<td>134C</td>
<td>1 / 4</td>
<td>1.2 / 0.06</td>
<td>0.12 / 0.18 / 0.25</td>
<td>S = MANUAL-PUSH TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>212D</td>
<td>1 / 4</td>
<td>1.2 / 0.12</td>
<td>0.12 / 0.18 / 0.25</td>
<td>C = MANUAL GEAR OPERATED TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>332C</td>
<td>1 / 16</td>
<td>0.8 / 0.8</td>
<td>0.12 / 0.18 / 0.25</td>
<td>E = ELECTRIC TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td>1000</td>
<td>2m</td>
<td>214C</td>
<td>1 / 4</td>
<td>1.6 / 0.24</td>
<td>0.12 / 0.18 / 0.25</td>
<td>S = MANUAL-PUSH TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>214D</td>
<td>1 / 4</td>
<td>1.6 / 0.24</td>
<td>0.12 / 0.18 / 0.25</td>
<td>C = MANUAL GEAR OPERATED TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>334C</td>
<td>1 / 8</td>
<td>2.5 / 0.24</td>
<td>0.12 / 0.18 / 0.25</td>
<td>E = ELECTRIC TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td>1600</td>
<td>2m</td>
<td>242L</td>
<td>1 / 6.3</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>S = MANUAL-PUSH TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>242D</td>
<td>1 / 6.3</td>
<td>2.1 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>C = MANUAL GEAR OPERATED TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>314C</td>
<td>1 / 4</td>
<td>1.6 / 0.37</td>
<td>0.12 / 0.18 / 0.25</td>
<td>E = ELECTRIC TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td>2000</td>
<td>2m</td>
<td>314D</td>
<td>1 / 4</td>
<td>1.6 / 0.37</td>
<td>0.12 / 0.18 / 0.25</td>
<td>S = MANUAL-PUSH TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>343L</td>
<td>1 / 6.5</td>
<td>2.5 / 0.7</td>
<td>0.12 / 0.18 / 0.25</td>
<td>C = MANUAL GEAR OPERATED TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>424D</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>E = ELECTRIC TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>320C</td>
<td>1 / 4</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>S = MANUAL-PUSH TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td>2500</td>
<td>2m</td>
<td>424L</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>C = MANUAL GEAR OPERATED TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>424D</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>E = ELECTRIC TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td>3200</td>
<td>1Am</td>
<td>434L</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>S = MANUAL-PUSH TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>1Am</td>
<td>424D</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>C = MANUAL GEAR OPERATED TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>424L</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>E = ELECTRIC TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td>4000</td>
<td>1Am</td>
<td>454D</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>S = MANUAL-PUSH TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>1Am</td>
<td>454D</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>C = MANUAL GEAR OPERATED TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>1Am</td>
<td>454D</td>
<td>1 / 2.5</td>
<td>2.5 / 0.65</td>
<td>0.12 / 0.18 / 0.25</td>
<td>E = ELECTRIC TROLLEY</td>
<td>0.08 / 0.25</td>
<td>SM2</td>
<td>0.38</td>
</tr>
</tbody>
</table>
DMK ELECTRIC CHAIN HOISTS WITH
DMT TROLLEYS

OVERALL DIMENSIONS – WEIGHTS

<table>
<thead>
<tr>
<th>CAPACITY (kg)</th>
<th>FEM GROUP</th>
<th>DMK TYPE</th>
<th>CHAIN FALLS</th>
<th>LIFTING SPEED (m/min)</th>
<th>LIFTING MOTOR POWER (kW)</th>
<th>DMT TROLLEY TYPE FOR HOIST</th>
<th>CHAIN TYPE</th>
<th>CHAIN WEIGHT PER METER (kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1Bm</td>
<td>132M</td>
<td>1</td>
<td>1 SPEED</td>
<td>0.2</td>
<td>S</td>
<td>4X12</td>
<td>0.38</td>
</tr>
<tr>
<td>200</td>
<td>1Bm</td>
<td>112M</td>
<td>1</td>
<td>1 SPEED</td>
<td>0.2</td>
<td>S</td>
<td>4X12</td>
<td>0.38</td>
</tr>
<tr>
<td>400</td>
<td>1Bm</td>
<td>214M</td>
<td>1</td>
<td>1 SPEED</td>
<td>0.4</td>
<td>S</td>
<td>5x15</td>
<td>0.58</td>
</tr>
<tr>
<td>800</td>
<td>1Bm</td>
<td>314M</td>
<td>1</td>
<td>1 SPEED</td>
<td>0.8</td>
<td>S</td>
<td>7x21</td>
<td>1.16</td>
</tr>
</tbody>
</table>

* Weight referred to 3m hook-run hoist.
** Dimensions for 2 speed trolleys in brackets.
*** SM3/EM3/CM3: for width > 220 mm up to 400 mm dimension J increases by 70 mm
**** SM4/EM4/CM4: for width > 220 mm up to 400 mm dimension J increases by 60 mm
***** SM5/EMS/CM5: for width > 220 mm up to 400 mm dimension J increases by 75 mm

TRAVEL HEADS FOR STANDING BRIDGE CRANE
3 DRH SERIES ELECTRICAL WIRE ROPE HOIST WITH DST/DRT TROLLEY

The range: created in 4 sizes 1 - 2 - 3 - 4 with capacity from 800 to 50000 kg in FEM units 1Bm -1Am - 2m - 3m at a lifting speed of 2-2.7 - 3 - 4 - 6 - 8 - 12 m/min or two lifting speeds of 2/0.7-2.7/0.9 - 3/1 - 4/1.3 – 6/2 - 8/2.6 - 12/4 m/min

<table>
<thead>
<tr>
<th>CAPACITY (kg)</th>
<th>HOIST TYPE</th>
<th>DATA OF DRH ELECTRICAL WIRE ROPE HOISTS</th>
<th>MOTOR POWER (kW)</th>
<th>ROPE Ø / TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>3m 12L3•D</td>
<td>800 3m 12L3• E 8 8/2,6 3/1 8 12 24 34 45</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>1000</td>
<td>3m 12L3•E</td>
<td>1000 3m 12L3• E 4 4/1,3 3/1 4 6 9 14 19</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>1250</td>
<td>3m 12L3•E</td>
<td>1250 3m 12L3• E 8 8/2,6 3/1 8 12 24 34 45</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>1600</td>
<td>3m 12L3•E</td>
<td>1600 3m 12L3• E 8 8/2,6 3/1 8 12 24 34 45</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>2000</td>
<td>3m 12L3•E</td>
<td>2000 3m 12L3• E 8 8/2,6 3/1 8 12 24 34 45</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>2500</td>
<td>3m 12L3•E</td>
<td>2500 3m 12L3• E 8 8/2,6 3/1 8 12 24 34 45</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>3000</td>
<td>3m 12L3•E</td>
<td>3000 3m 12L3• E 8 8/2,6 3/1 8 12 24 34 45</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>3500</td>
<td>3m 12L3•E</td>
<td>3500 3m 12L3• E 8 8/2,6 3/1 8 12 24 34 45</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>4000</td>
<td>3m 12L3•E</td>
<td>4000 3m 12L3• E 8 8/2,6 3/1 8 12 24 34 45</td>
<td>3/1</td>
<td>7B (7B)</td>
</tr>
<tr>
<td>Capacity (kg)</td>
<td>Hoist Fem Group</td>
<td>DRH Type</td>
<td>Speed at 50 Hz (m/min)</td>
<td>Motor Power (kW)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>N°</td>
<td>1 Speed</td>
<td>2 Speed</td>
<td>N°</td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The hoists with 2 falls with drum L, X1, X2 and hoists with 4 falls with drum X2 use anti-twist ropes. The type of anti-twist rope is shown in brackets. © DRH4 Version with Cylindrical Motor.

Travel Heads for Standing Bridge Crane

17
DRH SERIES ELECTRIC WIRE ROPE HOISTS WITH 2 AND 4 ROPE FALLS IN STANDING OR SUSPENDED EXECUTION

For DRH3 and DRH4 with L.V., dimension P becomes: DRH3 = 330; DRH4 = 360

* S2 = I1 – S3 – S1

N° OF ROPE FALLS | DRH TYPE

<table>
<thead>
<tr>
<th>N° OF ROPE FALLS</th>
<th>N° OF ROPE FALLS</th>
<th>DRUM C</th>
<th>DRUM N</th>
<th>DRUM L</th>
<th>DRUM X1</th>
<th>DRUM X2</th>
<th>WEIGHT (kg) WITH DRUM TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
<tr>
<td>1/4</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
</tbody>
</table>

OVERALL DIMENSIONS (mm)

<table>
<thead>
<tr>
<th>N° OF ROPE FALLS</th>
<th>N° OF ROPE FALLS</th>
<th>DRUM C</th>
<th>DRUM N</th>
<th>DRUM L</th>
<th>DRUM X1</th>
<th>DRUM X2</th>
<th>WEIGHT (kg) WITH DRUM TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
<tr>
<td>1/4</td>
<td></td>
<td>1200</td>
<td>1395</td>
<td>1250</td>
<td>1650</td>
<td>1935</td>
<td>2265</td>
</tr>
</tbody>
</table>

TRAVEL HEADS FOR STANDING BRIDGE CRANE

© DRH4 hoist with cylindrical motor.
DST/N MONORAIL TROLLEYS FOR DRH ELECTRIC WIRE ROPE HOISTS – 2 (2/1) AND 4 (4/1) ROPE FALL VERSIONS

DRH series electric wire rope hoists with 2 and 4 rope falls with normal trolley N

<table>
<thead>
<tr>
<th>N° OF ROPE FALLS</th>
<th>N/M TYPE</th>
<th>TROLLEY DST N/S</th>
<th>OVERALL DIMENSIONS (mm)</th>
<th>WEIGHT (kg) WITH DRUM TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>C1</td>
</tr>
<tr>
<td>2/1</td>
<td>1</td>
<td>1</td>
<td>140</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>140</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>160</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>275</td>
<td>-55</td>
</tr>
</tbody>
</table>

4/1	1	1	140	115	340	66	393	830	128	180		220	230	250	280	300
	2	2	160	110	365	75	400	950	148	195		300	310	335	380	400
	3	3	275	-70	430	90	460	1280	191	255		775	810	880	996	1070
	4	4	325	-105	530	102	468	1620	237	295		1415	1455	1590	1800	1970

© DRH4 hoist with cylindrical motor.

BEAM SPECIFICATIONS TABLE FOR DST/N TROLLEYS

<table>
<thead>
<tr>
<th>TROLLEY</th>
<th>MIN. BEAM WIDTH (mm)</th>
<th>MAX. THICKNESS (mm)</th>
<th>MIN. RADIUS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST1N</td>
<td>90</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>DST2N</td>
<td>119</td>
<td>23</td>
<td>–</td>
</tr>
<tr>
<td>DST3N</td>
<td>135</td>
<td>35</td>
<td>–</td>
</tr>
<tr>
<td>DST4N</td>
<td>180</td>
<td>41</td>
<td>–</td>
</tr>
</tbody>
</table>

Min. beam width = minimum beam width required
Minimum radius = minimum internal radius required for curved beams
Max. thickness = maximum beam flange thickness allowed

TRAVEL HEADS FOR STANDING BRIDGE CRANE
DST/R MONORAIL TROLLEYS FOR DRH ELECTRIC WIRE ROPE HOISTS - 2 FALL (2/1) AND 4 FALL (4/1) VERSIONS

DRH series electric wire rope hoists with 2 and 4 rope falls with low headroom trolley R

* For dimensions $I_1 - S_1 - S_2 - S_3$ see page 18

BEAM SPECIFICATIONS TABLE FOR DST/R TROLLEYS

<table>
<thead>
<tr>
<th>TROLLEY</th>
<th>MIN. BEAM WIDTH (mm)</th>
<th>MAX. THICKNESS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST1R</td>
<td>90</td>
<td>20</td>
</tr>
<tr>
<td>DST2R</td>
<td>119</td>
<td>23</td>
</tr>
<tr>
<td>DST3R</td>
<td>135</td>
<td>35</td>
</tr>
<tr>
<td>DST4R</td>
<td>180</td>
<td>41</td>
</tr>
</tbody>
</table>

TRAVEL HEADS FOR STANDING BRIDGE CRANE
TRAVEL HEADS FOR STANDING BRIDGE CRANE

DRT DOUBLE GIRDER TROLLEYS FOR DRH STANDING ELECTRIC ROPE HOISTS - 2 FALL (2/1) AND 4 FALL (4/1) VERSIONS

DRH series electric wire rope hoists with 2 and 4 rope falls with DRT double girder trolley, in standing configuration

<table>
<thead>
<tr>
<th>DHR TYPE</th>
<th>DRT TROLLEY</th>
<th>GAUGE TROLLEY S (mm)</th>
<th>TYPE OF DRUM</th>
<th>WEIGHT DRH + DRT (kg)</th>
<th>OVERALL DIMENSIONS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
</tr>
<tr>
<td>N° OF ROPE FALLS</td>
<td>1/1</td>
<td>1</td>
<td>1000</td>
<td>C</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>250</td>
<td>830</td>
<td>1060</td>
<td>157.5</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>280</td>
<td>1230</td>
<td>1460</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>306</td>
<td>1500</td>
<td>1730</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>336</td>
<td>1770</td>
<td>2000</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>306</td>
<td>830</td>
<td>1060</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>350</td>
<td>1230</td>
<td>1460</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>376</td>
<td>1500</td>
<td>1730</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>406</td>
<td>1770</td>
<td>2000</td>
<td>120</td>
</tr>
<tr>
<td>2/1</td>
<td>2</td>
<td>1</td>
<td>1000</td>
<td>C</td>
<td>716</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>750</td>
<td>1030</td>
<td>1342</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>860</td>
<td>1550</td>
<td>1862</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>946</td>
<td>1840</td>
<td>2152</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>1000</td>
<td>2230</td>
<td>2542</td>
<td>145</td>
</tr>
<tr>
<td>4/1</td>
<td>3</td>
<td>2</td>
<td>1000</td>
<td>C</td>
<td>1252</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1298</td>
<td>1200</td>
<td>1586</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1429</td>
<td>1760</td>
<td>2146</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>1675</td>
<td>2210</td>
<td>2596</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>1865</td>
<td>2710</td>
<td>3096</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>N° OF ROPE FALLS</td>
<td>3/2</td>
<td>1 1000</td>
<td>C</td>
<td>1307</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1353</td>
<td>1200</td>
<td>1586</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1547</td>
<td>1760</td>
<td>2146</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>1730</td>
<td>2210</td>
<td>2596</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>1920</td>
<td>2710</td>
<td>3096</td>
<td>180</td>
</tr>
</tbody>
</table>

© DRH4 hoist with cylindrical motor.

TRAVEL HEADS FOR STANDING BRIDGE CRANE

For dimensions I1 - S1 - S2 - S3 - N - P - H see page 18

(*) The standard gauge is S=1000 mm, a gauge of S = 1200 mm can be supplied upon request.
DRT Double Girder Trolleys for DRH Suspended Electric Rope Hoists - 2 Fall (2/1) and 4 Fall (4/1) Versions

DRH series electric wire rope hoists with 2 and 4 rope falls with DRT double girder trolley, in suspended configuration.

For dimensions I1 - S1 - S2 - S3 - N - P - H see page 18

(*) The standard gauge is $S = 1000$ mm, a gauge of $S = 1200$ mm can be supplied upon request.

| N° of Rope Falls | DHR Type | DRT Trolley | Gauge of Trolley S (mm) | Type of Drum DRH | Weight DRH + DRT (kg) | G1 | G2 | G3 | G4 | G5 | G6 | T1 | T2 | ø R | H4 | H7 |
|------------------|----------|-------------|------------------------|-----------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 1 | 1000 | C | 236 | 710 | 940 | 155 | 155 | 66 | 392 | 210 | -15 | 125 | 145 | 13 |
| | | N | 250 | 830 | 1060 | 157.5| 157.5| 66 | 392 | 207.5| -17.5| 125 | 145 | 13 |
| | | L | 280 | 1230 | 1460 | 170 | 170 | 66 | 392 | 195 | -30 | 125 | 145 | 13 |
| | | X1 | 306 | 1500 | 1730 | 150 | 150 | 66 | 392 | 215 | -10 | 125 | 145 | 13 |
| | | X2 | 336 | 1770 | 2000 | 120 | 120 | 66 | 392 | 245 | 20 | 125 | 145 | 13 |
| 2 1 | 1000 | C | 296 | 710 | 940 | 115 | 115 | 66 | 392 | 295 | 40 | 125 | 145 | 15 |
| | | N | 306 | 830 | 1060 | 115 | 115 | 66 | 392 | 295 | 40 | 125 | 145 | 15 |
| | | L | 350 | 1230 | 1460 | 115 | 115 | 66 | 392 | 295 | 40 | 125 | 145 | 15 |
| | | X1 | 376 | 1500 | 1730 | 120 | 120 | 66 | 392 | 290 | 35 | 125 | 145 | 15 |
| | | X2 | 406 | 1770 | 2000 | 120 | 120 | 66 | 392 | 290 | 35 | 125 | 145 | 15 |
| 2/1 4/1 | 1000 | C | 716 | 890 | 1202 | 145 | 145 | 80 | 461 | 404 | -96 | 160 | 190 | 11 |
| | | N | 750 | 1030 | 1342 | 145 | 145 | 80 | 461 | 404 | -96 | 160 | 190 | 11 |
| | | L | 860 | 1550 | 1862 | 145 | 145 | 80 | 461 | 404 | -96 | 160 | 190 | 11 |
| | | X1 | 946 | 1840 | 2152 | 145 | 145 | 80 | 461 | 404 | -96 | 160 | 190 | 11 |
| | | X2 | 1000 | 2230 | 2542 | 145 | 145 | 80 | 461 | 404 | -96 | 160 | 190 | 11 |
| 4 3 | 1000 | C | 1240 | 1060 | 1446 | 170 | 170 | 90 | 520 | 492 | -143 | 200 | 228 | 11 |
| | | N | 1286 | 1200 | 1586 | 170 | 170 | 90 | 520 | 492 | -143 | 200 | 228 | 11 |
| | | L | 1480 | 1760 | 2146 | 170 | 170 | 90 | 520 | 492 | -143 | 200 | 228 | 11 |
| | | X1 | 1656 | 2210 | 2596 | 180 | 180 | 90 | 520 | 482 | -153 | 200 | 228 | 11 |
| | | X2 | 1846 | 2710 | 3096 | 180 | 180 | 90 | 520 | 482 | -153 | 200 | 228 | 11 |
| Φ4 3 | 1000 | C | 1295 | 1060 | 1446 | 170 | 170 | 90 | 520 | 652 | -143 | 200 | 228 | 11 |
| | | N | 1341 | 1200 | 1586 | 170 | 170 | 90 | 520 | 652 | -143 | 200 | 228 | 11 |
| | | L | 1535 | 1760 | 2146 | 170 | 170 | 90 | 520 | 652 | -143 | 200 | 228 | 11 |
| | | X1 | 1711 | 2210 | 2596 | 180 | 180 | 90 | 520 | 642 | -153 | 200 | 228 | 11 |
| | | X2 | 1901 | 2710 | 3096 | 180 | 180 | 90 | 520 | 642 | -153 | 200 | 228 | 11 |

©DRH4 hoist with cylindrical motor.

Travel Heads for Standing Bridge Crane

For dimensions I1 - S1 - S2 - S3 - N - P - H see page 18

(*) The standard gauge is $S = 1000$ mm, a gauge of $S = 1200$ mm can be supplied upon request.

©2022 DRH hoist with cylindrical motor.
DRT Double Girder Trolleys for DRH Electric Rope Hoists - Transversal Version with 2 Fall (2/1) and 4 Fall (4/1) Versions

DRH series electric wire rope hoists with 2 and 4 rope falls with DRT double girder trolley, in transversal standing configuration.

For dimensions I1 - S1 - S2 - S3 - N - P – H2 see page 18

\[H = H5 + H6 \]

No. of Rope Falls	DHR Type	DRT Trolley	Gauge Trolley S (mm)	Type of Drum DRH	Weight DRH + DRT (kg)	G1	G2	G3	G4	G5	G6	G7	T1	T2	Ø R	H4	H5	H6	2 Fall	4 Fall	
2/1 4/1																					
1 1	1000	C	216	400	630	315	315	66	392	285	99	422	125	145	375	405	360				
		N	226	400	630	315	300	66	392	185	114	322	125	145	375	405	360				
		L	270	710	940	470	110	66	392	0	304	137	125	145	375	315	275				
2 1	1000	C	276	400	630	315	267	66	392	253	192	375	125	145	415	485	425				
		N	286	400	630	315	252	66	392	148	207	270	125	145	415	485	425				
		L	346	710	940	470	200	66	392	0	259	122	125	145	415	405	335				
3 2	1000	C	660	500	812	406	195	80	461	205	430	461	160	190	570	630	570				
		N	686	500	812	406	170	80	461	90	455	346	160	190	570	630	570				
		L	830	890	1202	601	140	80	461	0	485	256	160	190	570	520	450				
4 3	1000	C	1190	600	986	493	140	90	520	140	625	440	200	228	698	768	722				
		N	1240	600	986	493	200	90	520	140	565	440	200	228	698	768	722				
§4 3	1000	C	1245	600	986	493	140	90	520	140	785	440	200	228	698	768	722				
		N	1295	600	986	493	200	90	520	140	725	440	200	228	698	768	722				

© DRH4 hoist with cylindrical motor.

Travel Heads for Standing Bridge Crane
DRT DOUBLE GIRDER TROLLEYS FOR DRH ELECTRIC ROPE HOISTS - 6 FALL (6/1) VERSION

<table>
<thead>
<tr>
<th>NO. OF ROPE FALLS</th>
<th>DRH TYPE</th>
<th>DRT TROLLEY</th>
<th>GAUGE TROLLEY (mm)</th>
<th>TYPE OF DRUM</th>
<th>WEIGHT DRH + DRT (kg)</th>
<th>OVERALL DIMENSIONS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>N</td>
<td>1200</td>
<td>1500 1900 185 360 90</td>
<td>520 565 415 105</td>
<td>820 235 200</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>L</td>
<td>1320</td>
<td>2070 2470 185 400 90</td>
<td>565 515 415 105</td>
<td>820 235 200</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>X1</td>
<td>1400</td>
<td>2500 2900 185 540 90</td>
<td>520 575 415 105</td>
<td>820 235 200</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>X2</td>
<td>1500</td>
<td>3000 3400 185 410 90</td>
<td>520 575 415 105</td>
<td>820 235 200</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>N</td>
<td>1800</td>
<td>1500 1900 230 420 90</td>
<td>520 470 255 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>N</td>
<td>2100</td>
<td>1500 1900 650 240 90</td>
<td>520 470 255 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>L</td>
<td>2000</td>
<td>2070 2470 230 420 90</td>
<td>590 245 960 235</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X1</td>
<td>2600</td>
<td>2500 2900 230 249 90</td>
<td>590 245 960 235</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X2</td>
<td>2950</td>
<td>3000 3400 230 249 90</td>
<td>590 245 960 235</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>N</td>
<td>1855</td>
<td>1500 1900 230 249 90</td>
<td>580 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>L</td>
<td>2155</td>
<td>1500 1900 650 249 90</td>
<td>580 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X1</td>
<td>2455</td>
<td>1500 1900 930 249 90</td>
<td>580 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X2</td>
<td>2755</td>
<td>2070 2470 930 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>N</td>
<td>2305</td>
<td>2500 2900 230 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>L</td>
<td>2705</td>
<td>3000 3400 230 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X1</td>
<td>2605</td>
<td>2500 2900 650 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X2</td>
<td>2950</td>
<td>3000 3400 650 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>N</td>
<td>1855</td>
<td>1500 1900 230 249 90</td>
<td>580 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>L</td>
<td>2155</td>
<td>1500 1900 650 249 90</td>
<td>580 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X1</td>
<td>2455</td>
<td>1500 1900 930 249 90</td>
<td>580 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X2</td>
<td>2755</td>
<td>2070 2470 930 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>N</td>
<td>2305</td>
<td>2500 2900 230 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>L</td>
<td>2705</td>
<td>3000 3400 230 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X1</td>
<td>2605</td>
<td>2500 2900 650 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td>X2</td>
<td>2950</td>
<td>3000 3400 650 249 90</td>
<td>590 470 245 960</td>
<td>235 200</td>
<td></td>
</tr>
</tbody>
</table>

©DRH4 hoist with cylindrical motor.

* The trolley is made with a single gear motor (motor 100)
** The trolley is made with double gear motor (motor 80)

TRAVEL HEADS FOR STANDING BRIDGE CRANE
DRT Double Girder Trolleys for DRH Electric Rope Hoists - 8 Fall (8/1) Version

<table>
<thead>
<tr>
<th>N° of Rope Falls</th>
<th>DRH Type</th>
<th>DRT Trolley</th>
<th>Gauge Trolley’s (mm)</th>
<th>Type of Drum DRH</th>
<th>Weight DRH + DRT (kg)</th>
<th>Overall Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1400</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 3</td>
<td>1400</td>
<td>2070 2470 185 400</td>
<td>90</td>
<td>520 635 515 95</td>
<td>820 235 200</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1480</td>
<td>2070 2470 605 400</td>
<td>90</td>
<td>- 635 515 95 95</td>
<td>820 235 200</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1730</td>
<td>2070 2470 885 400</td>
<td>90</td>
<td>- 635 515 95 95</td>
<td>820 235 200</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1400</td>
<td>2500 2900 185 540</td>
<td>90</td>
<td>520 635 515 95</td>
<td>95 820 235 200</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1480</td>
<td>2500 2900 605 540</td>
<td>90</td>
<td>- 635 515 95 95</td>
<td>95 820 235 200</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1750</td>
<td>2500 2900 885 540</td>
<td>90</td>
<td>- 635 515 95 95</td>
<td>95 820 235 200</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1950</td>
<td>3000 3400 885 650</td>
<td>90</td>
<td>- 635 650 515 95</td>
<td>95 820 235 200</td>
</tr>
<tr>
<td>4</td>
<td>*** 4</td>
<td>1400</td>
<td>2000 1500 1950 230</td>
<td>240 97</td>
<td>- 678 470 930 287</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>*** 4</td>
<td>2240</td>
<td>2400 1500 1950 550</td>
<td>240 97</td>
<td>- 678 570 230 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>*** 4</td>
<td>2800</td>
<td>2600 1500 1950 830</td>
<td>240 97</td>
<td>- 678 570 230 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1400</td>
<td>2300 2060 2510 230</td>
<td>240 97</td>
<td>- 678 470 230 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2240</td>
<td>2600 2060 2510 550</td>
<td>240 97</td>
<td>- 678 570 230 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2800</td>
<td>2800 2060 2510 830</td>
<td>240 97</td>
<td>- 678 570 230 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1400</td>
<td>2500 2500 2950 230</td>
<td>240 97</td>
<td>- 688 470 220 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2240</td>
<td>2900 2500 2950 550</td>
<td>240 97</td>
<td>- 688 570 220 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2800</td>
<td>3100 2500 2950 830</td>
<td>240 97</td>
<td>- 688 570 220 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1400</td>
<td>2680 3000 3450 230</td>
<td>240 97</td>
<td>- 688 470 220 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2240</td>
<td>3030 3000 3450 550</td>
<td>240 97</td>
<td>- 688 570 220 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2800</td>
<td>3270 3000 3450 830</td>
<td>240 97</td>
<td>- 688 570 220 930</td>
<td>287 250</td>
</tr>
<tr>
<td>8/1</td>
<td>*** 4</td>
<td>1400</td>
<td>2055 1500 1950 230</td>
<td>240 97</td>
<td>- 678 470 390 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>*** 4</td>
<td>2240</td>
<td>2455 1500 1950 550</td>
<td>240 97</td>
<td>- 678 570 390 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>*** 4</td>
<td>2800</td>
<td>2655 1500 1950 830</td>
<td>240 97</td>
<td>- 678 570 390 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1400</td>
<td>2355 2060 2510 230</td>
<td>240 97</td>
<td>- 678 470 390 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2240</td>
<td>2655 2060 2510 550</td>
<td>240 97</td>
<td>- 678 570 390 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2800</td>
<td>2855 2060 2510 830</td>
<td>240 97</td>
<td>- 678 570 390 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1400</td>
<td>2555 2500 2950 230</td>
<td>240 97</td>
<td>- 688 470 380 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2240</td>
<td>2955 2500 2950 550</td>
<td>240 97</td>
<td>- 688 570 380 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2800</td>
<td>3155 2500 2950 830</td>
<td>240 97</td>
<td>- 688 570 380 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>1400</td>
<td>2735 3000 3450 230</td>
<td>240 97</td>
<td>- 688 470 380 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2240</td>
<td>3035 3000 3450 550</td>
<td>240 97</td>
<td>- 688 570 380 930</td>
<td>287 250</td>
</tr>
<tr>
<td></td>
<td>** 3</td>
<td>2800</td>
<td>3325 3000 3450 830</td>
<td>240 97</td>
<td>- 688 570 380 930</td>
<td>287 250</td>
</tr>
</tbody>
</table>

©DRH4 hoist with cylindrical motor.

* The trolley is made with a single gear motor (motor 100)
** The trolley is made with double gear motor (motor 80)
*** The trolley is made with double gear motor (motor 100).

TRAVEL HEADS FOR STANDING BRIDGE CRANE
4 - 9 ELECTRICAL CONTROL PANELS

Description of electrical system components.

1 ELECTRICAL CONTROL PANEL IN LOW VOLTAGE AT 48 V composed of a sealed enclosure with IP 55 protection complete with lock for safely opening, line circuit breaker with door lock safety device, siren controlled by the “start-alarm” button of the pushbutton panel. The inside of the control panel contains the transformer for low voltage supply of the control circuits, general line contactor, contactors-inverters for controlling the motor of the hoist, trolley and bridge, the terminal board for auxiliary and power circuit connections and the motor and transformer protection fuses; The electrical panel can be equipped with rapid sockets as an option. Upon request, the electrical panel may contain “Inverters” for activating the various movements. The wiring diagrams for the connection are placed inside it. The wiring diagrams include:
- topographical diagrams
- functional, control and power diagrams
- terminal board diagrams
- All the utilities and cables are indicated and numbered on the components.

2 ELECTRICAL LINE WITH CABLE LOOPS SUPPLYING THE HOIST AND TROLLEY composed of flat shaped flexible multi pole cables, suspended on travel trolleys within a C profile in steel sheet, attached along the bridge crane beam with shelves and clasps. Upon request the electrical line can be created with rapid sockets for connection to the hoist and electrical panel (excluding bridge motors).

3 ELECTRICAL LINES TO CONNECT BRIDGE MOTORS TO THE PANEL. Composed of round multi pole cables, attached with specific devices, along the head and weight bearing beams of the bridge crane.

4 SUSPENDED CONTROL PUSHBUTTON PANEL AND RELATIVE CABLES WITH CABLE LOOPS. Supplied with a shock resistant thermoplastic cover and buttons to enable all of the operating functions as well as “start-alarm” button and emergency stop red mushroom head button. The pushbutton panel is made to slide along the weight bearing beam of the bridge crane, via a cable loop suspended on trolleys within a C profile in steel sheet. It can be supplied radio controlled upon request.

5 ELECTRICAL LIMIT SWITCH FOR BRIDGE TRAVEL MOVEMENTS. It acts on the low voltage auxiliary circuits. It is a cross type and can be single or double clicking for two travel speeds, i.e. the first click generates pre-slowdown, the second the stop, based on the system configuration. Upon requested and when envisaged, or if two cranes must operate in the same span, anti-collision systems are available.
PERFECTLY UP-TO-DATE

ARIANNA: THE SOFTWARE THAT GUIDES MANUFACTURERS IN THEIR SELECTION OF COMPONENTS TO DESIGN BRIDGE CRANES.

MAIN FEATURES OF THE CRANE DESIGNER SOFTWARE
Guided selection of the Appropriate Donati products for manufacturing bridge cranes, based on the structural and mechanical requirements of the intended use and environment, by entering the following inputs:
1) Capacity – SPAN – FEM class and configuration (Single Girder – Double Girder)
2) Selection of hoist type
3) Selection of trolley type
4) Type of Beam material, desired deflection (from 1/600 to 1/1000)
5) Selection of the Electrical Control System.

Following outputs are therefore obtained:
- Beam type (Box Beam or HE Beam) with relative dimensions and static specifications
- Endcarriage type and Gear Motor type based on speed
- Layout diagram of the installation
- List of data and codes with relative prices
- Possibility of creating a quotation directly in a word format.
- Possibility of printing the crane layout.
Donati Sollevamenti S.r.l.
Via Quasimodo, 17
20025 Legnano (MI) – Italy
T +39 0331 14811
F +39 0331 1481880
E dvo.info@donaticranes.com

Factory:
Via Archimede, 52
20864 Agrate Brianza (MB) – Italy

www.donaticranes.com